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An extended drift-diffusion model is considered to account for the kinetics of
electrons trapped in defect states within a semiconductor material. A discretization
scheme based on Newton–Krylov iterations and mixed finite volumes is then pro-
posed and applied to the model, even in the presence of Schottky contacts (i.e., Robin-
type boundary conditions). Numerical results concerning the simulation of an electro-
optical device in several working conditions are presented last.c© 2000 Academic Press
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1. INTRODUCTION

This article deals with the numerical simulation of the dynamics of aCdTe resistor subject
to a very high bias. Such a device is employed as a fast switch in state-of-the-art optical
communication systems [34, 24, 21].

The mathematical model consists of the classical drift-diffusion equations [15, 31, 12]
(henceforth denoted by DD) plus a set of ordinary differential equations (ODEs) describing
the kinetics of the carriers trapped in defect states that are present within the semiconductor
energy gap (henceforth referred to astraps) [10]. The spatial integration domain is assumed
to be one-dimensional,L being the device length. This is due to the nature of the physical
problem at hand, although the methodologies that we are going to introduce are by no
means restricted to one-dimensional geometries. Suitable initial and boundary conditions
(of Dirichlet and Robin type) must be provided for the unknowns of the problem, namely
electric potentialψ , free electron and hole concentrationsn andp, and trap concentrations
nTi (i = 1, . . . ,nD) andpT j ( j = 1, . . . ,nA), wherenD andnA denote the number of donor-
type and acceptor-type trapping states, respectively.

Despite its apparent simplicity, theCdTe resistor simulation is a heavily stiff problem,
mainly due to the fact that this kind of device is quite “long” in real-life applications. This

197

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press

All rights of reproduction in any form reserved.



198 BOSISIO, MICHELETTI, AND SACCO

is a source of troubles when iterative decoupling algorithms are employed to solve the
differential system, since the convergence rate is dramatically reduced asL gets large
[13]. Such a drawback clearly demands the use of coupled approaches like Newton’s
method, which is (asymptotically) quadratically convergent, but requires a big compu-
tational effort. Moreover, stable and robust discretization schemes are mandatory for cop-
ing with the internal and boundary layers that arise when solving the current continuity
equations.

In this article we propose an efficient implementation of the Newton method on the whole
coupled system that is based on the use of a block Gauss–Seidel algorithm to decouple the
traps from the free carriers. For each Gauss–Seidel step, we first solve by Krylov subspace
iterations [14, 25] the free carrier block equations; then we solve the kinetic ODEs to
update the trap concentrations. This second step is virtually cost-free since it requires the
solution ofnD + nA diagonal linear systems. As for the spatial discretization, mixed finite
volumes (MFV) are employed which ensure current flux conservation and nonnegative
concentrations of free carriers [28]. Time advancing is dealt with the Backward Euler
method (BE), which is well-known to be unconditionally stable. It is worth noting that
the use of MFV and BE guarantees the positivity of the computed trapped carriers as
well.

The outline of the article is as follows. The mathematical model of the problem at hand is
presented in Section 2. An efficient implementation of a suitable iterative decoupling algo-
rithm is then addressed in Section 3, where the Schur complement for Newton’s method and
the Kerkhoven–Saad approaches [14] are analyzed and compared. The spatial discretization
scheme of the current continuity equations is described in Section 4, where a difference
scheme is derived from the mixed finite element formulation of the problem by coupling
the use of a quadrature formula to diagonalize the local stress matrix [3] with a harmonic
average of the diffusion coefficient [20]. This technique is equivalent in one dimension to
using the well-known exponentially fitted Scharfetter–Gummel method [30] and can be
extended to the multidimensional case (see [20, 27–29, 19]). Numerical results are then
reported in Section 5 to validate the computational procedure in the simulation of a realistic
device operating in distinct (and quite different) working conditions.

2. THE SEMICONDUCTOR EQUATIONS COMPRISING TRAPS

The drift-diffusion equations including trap-assisted phenomena read (see, e.g., [31])

∂nTi

∂t
= UD

ni
−UD

pi
i = 1, . . . ,nD (1a)

∂pT j

∂t
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pj
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nj
j = 1, . . . ,nA (1b)

−div(ε∇ψ) = q
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with the constitutive relations,{
Jn = q Dn∇n− qµnn∇ψ
Jp = −q Dp∇ p− qµp p∇ψ, (2)

and the following expressions of the charge-trapping net recombination rates:
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Ti
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)
nTi

]
UD
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(
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Ti
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KBT

)(
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)]
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UA
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pj
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(
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]
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nj
= CA

nj

[
pT j n− NC exp

(
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T j

KBT

)(
NA j − pT j

)]
j = 1, . . . ,nA .

(3)

Suitable initial and boundary conditions must of course be provided. In (1), the unknowns
ψ , n, p, nTi , and pT j are the electric potential and the electron and hole free and trapped
carrier concentrations. The constantsq andε are the electronic charge and the material
dielectric permettivity, respectively. The functionsµn andµp are the carrier mobilities,
related to the diffusivitiesDn andDp, respectively, through Einstein’s relation.

Trapping recombination/generation phenomena are modeled by (3), whereKB, T , EC,
andEV are the Boltzmann constant, the electronic temperature (assumed isothermal with
the crystal lattice), and the conduction and valence band energy levels, respectively. The
constantsNC and NV are the effective densities of states. We assume that all of the traps
have only one energy level, and there is no interaction among traps; moreover, we shall
assume that the readjustment time for a trapped electron is negligible compared to time
required on the average for the trap to emit the electron or to capture a hole (see [26]).

Semiconductor nondegeneracy is assumed henceforth (i.e.,n, p¿ NC, NV), which al-
lows us to approximate the Fermi–Dirac statistics for the free-carriers with the Maxwell–
Boltzmann statistics. The number of donor levels occupied by the trapped electrons, instead,
is given by Fermi–Dirac statistics

nT = ND

1+ exp
(
ED

T − EF
KBT

) , (4)

because the energy distance between the trapping levelED
T and the fermi levelEF can be

small, thus making the effects of Pauli principle nonnegligible. An analogous relation to
(4) holds for the trapped holes occupying the acceptor levels: Mathematically, (4) implies
that ND − nT ≥ 0 (NA − pT ≥ 0) for all x andt .

The coefficientsCD
ni

, CD
pi

(CA
nj
,CA

pj
, resp.) and the parametersED

Ti
(EA

T j
, resp.) denote the

capture coefficients and the energy levels of each trap within the energy gap. Superscripts
D and A characterize “donor-type” and “acceptor-type” trapping centers, respectively.NDi

andNA j are respectively the concentrations of each donor-type and acceptor-type impurity
throughout the semiconductor. (For a complete derivation of the drift-diffusion model, see
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[15, 12, 31], and a detailed physical description of the recombination/generation processes
can be found in [33] and [31], Chapter 4).

We point out that assuming the trapping center to be in stationary conditions, i.e.,
∂nT

∂t = ∂pT

∂t = 0, we recover the classical Shockley–Read–Hall model for trap-assisted
generation–recombination phenomena. The functionU in (1d)–(1e) denotes the net
recombination rate due to processes different from the trap-assisted phenomena (Shockley–
Read–Hall processes). It includes three-particle phenomena (Auger recombination, impact
ionization), and thedirect processes assisted by photons (band-to-bandoptical recombi-
nation and generation) [31]. Henceforth, we will neglect such phenomena, except for the
optical generation, thus assumingU = −Gopt.

3. THE ITERATIVE SCHEME AND THE NEWTON METHOD

System (1) constitutes a set of nonlinearly coupled equations so that a suitable decoupling
algorithm is highly recommended for its solution.

A first approach could be the use of ageneralized Gummel map[11], which amounts to
solving each equation assuming only the corresponding variable to be unknown and then
iterating until convergence is achieved. Despite its simplicity, this approach is not very sat-
isfactory because of the very high number of iterations required for convergence, especially
under high bias and high photogeneration conditions [17]. A second possibility consists of
using a global Newton algorithm. This is general will certainly improve convergence speed
at the expense of an increase in the computational cost.

We thus follow an intermediate strategy, which has proved to work quite effectively in
numerical experiments; i.e., we decouple the traps from the other equations of the sys-
tem by means of a block Gauss–Seidel algorithm and apply Newton’s method only to
Poisson and currents equations. This considerably simplifies the iterative scheme, since
the Jacobian matrix can be handled in a block fashion, reducing both the computational
time and the required memory. Moreover, our implementation of Newton’s method ensures
that the right-hand sides in both current equations are positive, so that adiscrete maxi-
mum principlefor the concentrations holds provided that a suitable discretization scheme is
employed.

In the forthcoming sections we address two different implementations of Newton’s
method on the DD equations only (i.e., Poisson and current continuity equations), assuming
the traps to be known. This amounts to analyzing the single step of the outer Gauss–Seidel
loop, corresponding to the time discretization of system (1) by the BE method.

3.1. The Schur Complement Approach

Assuming the traps to be known, the DD system can be symbolically written through
three nonlinear operators as: 

V(ψ, n, p) = 0 (5a)

W(n, ψ) = 0 (5b)

Z(p, ψ) = 0. (5c)

Denoting by (v,w, z) the variations of (ψ , n, p) and neglecting the (possible) dependencies
of the mobilitiesµn andµp on (ψ , n, p), a step of Newton’s method for the DD system can
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be written in matrix form asA11 A12 A13

A21 A22 0

A31 0 A33


vw

z

 =
−V(ψ, n, p)

−W(n, ψ)

−Z(p, ψ)

 , (6)

where the matrix blocksA i j are given by, fori , j = 1, 2, 3,

A11v = ∂V
∂ψ

(v) = −div(ε∇v)

A12w = ∂V
∂n
(w) = w A13z = ∂V

∂p
(z) = −z

A21v = ∂W
∂ψ

(v) = div(qµnn∇v) A22w = ∂W
∂n

(w) = −div Jn(w)

A31v = ∂Z

∂ψ
(v) = −div(qµp p∇v) A33z = ∂Z

∂p
(z) = div Jp(z).

(7)

The presence of the two zero blocks allows us to eliminatew and z from the last two
equations as a function ofv: {

w = −A−1
22 (W + A21v)

z = −A−1
33 (Z + A31v).

(8)

Plugging (8) back into the first equation of (6) we finally obtain(
A11− A12A−1

22 A21− A13A−1
33 A31

)
v = −V + A12A−1

22 W + A13A−1
33 Z, (9)

where the so calledSchur complementmatrixS can be recognized on the left-hand side:

S= A11− A12A−1
22 A21− A13A−1

33 A31. (10)

Matrix S is in general full, due to the inversion of blocksA22 and A33, although each
single blockA i j has a sparse structure. This makes it in practice impossible to build and
store the Schur matrixS and thus requires the use of aniterative method such asGMRES

to solve system (9) [25]. This method requires only the multiplication of the matrixSwith
some vectorx, which can be done as follows:

Sx= A11x− A12y− A13z, (11)

wherey andz can be found by solving the systemsA22y = A21x andA33z= A31x.

3.2. An Abstract Framework

Each of the equations (5) implicitly defines a nonlinear operator:
ψ = Ψ(n, p)

n = N(ψ)

p = P(ψ).

(12)
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Plugging the operators related to the concentrations back into the potential equation we get

ψ = Ψ(N(ψ),P(ψ)). (13)

SettingT(ψ) = 9(N(ψ),P(ψ)), the solution of the DD system thus amounts to dealing
with the nonlinear operator equation:

ψ = T(ψ). (14)

A first approach to solving (14) consists of resorting to a fixed point iteration:

ψk+1 = T(ψk). (15)

This latter is exactly the classicalGummel map(where the equations are solved in reverse
order with respect to the standard decoupling algorithm).

An alternative strategy (originally proposed by Kerkhoven and Saad [14]) consists of
reformulating (14) as:

(I − T)(ψ) = 0, (16)

I being the identity operator. It is now clearly possible to apply Newton’s method to (16) to
obtain {

J(v) = −(I − T)(ψk)

ψk+1 = ψk + v,
(17)

whereJ denotes the Fr´echet derivative of the operatorI − T:

J = ∂

∂ψ
[I − T] = ∂

∂ψ
[I −Ψ(N(ψ),P(ψ))] = I − ∂Ψ

∂n

∂N
∂ψ
− ∂Ψ
∂p

∂P
∂ψ

. (18)

Differentiating the current equations in (5) with respect toψ , and the potential equation
with respect ton andp yields

J =
(
∂V
∂ψ

)−1[
∂V
∂ψ
− ∂V
∂n

(
∂W
∂n

)−1
∂W
∂ψ
− ∂V
∂p

(
∂Z
∂p

)−1
∂Z
∂ψ

]
, (19)

from which we conclude that method (17) leads to solve the linear system{
I −
(
∂V
∂ψ

)−1[
∂V
∂n

(
∂W
∂n

)−1
∂W
∂ψ
+ ∂V
∂p

(
∂Z
∂p

)−1
∂Z
∂ψ

]}
v = −V(ψ,N(ψ),P(ψ)). (20)

Using definitions (7), we can write (20) in matrix form as

A−1
11

(
A11− A12A−1

22 A21− A13A−1
33 A31

)
v = −V; (21)

that is, (
A11− A12A−1

22 A21− A13A−1
33 A31

)
v = −A11V. (22)

It is easily seen that this linearization process shares thesamecoefficient matrix as the
Newton method (9) when implemented with a Schur complement approach, but has a
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different right-hand side. Computing this latter amounts to solving at each time step the two
continuity equations (1d)–(1e) with a given potential.

With this aim, we consider a suitable splitting of the recombination/generation terms that
ensures the positiveness of the right-hand sides of the corresponding finite element systems
and thus, in turn, the positiveness of the concentrations (discrete maximum principle). This
statement will be addressed more in detail in the next section and represents the main
difference between approaches (22) and (9).

Furthermore, we notice that the blockA11 arises as a natural preconditioner for the Schur
matrix. In such a case, the eigenvalues of the final matrix at the left-hand side of (21) are
clustered around the value 1 in the complex plane due to the inversion of blocksA22 and
A33 coming from the discretization of two elliptic problems [14].

4. NUMERICAL SOLUTION OF THE CURRENT CONTINUITY EQUATIONS

In this section we deal with the numerical approximation of the current continuity equa-
tions in a one dimensional domain [0,L] using mixed finite elements. The multidimensional
extension of the method has been considered and analyzed in [20, 27–29, 19].

Using the classical Slotboom change of variable [32], the current densities can be written
as

J=±q Dνnintre
±ψ/V thu′, (23)

where the prime denotes spatial differentiation,ν stands fornorp, Vth is the thermal voltage,
nintr is the intrinsic concentration in the semiconductor andu= ν

nintr
e∓ψ/Vth is the Slotboom

variable associated with electrons (top sign) or holes (bottom sign), here and throughout.
Owing to (23) the boundary value problem associated with each linearized current con-

tinuity equation can be formulated as
J=±au′ in (0, L)

∓J ′ + σu= f in (0, L)

u(0)= g, J(L) = ∓α(u(L)− uS),

(24)

where

a = q Dνnintre
±ψ/V th, (25)

while g, α, anduS are positive given constants anda, σ , andf are positive given functions
with a−1, σ ∈ L∞(0, L) and f ∈ L2(0, L) (for the definition of all the function spaces, see,
e.g., [22], Chapter 1, and [6], Chapter 3).

To prove the positiveness ofσ and f , consider the current continuity equation for electrons
and assume for the sake of simplicity (but without loss of generality) thatnD = nA = 1
in (1). Then, using the BE method for the time discretization and moving the recombination
terms to the left-hand side, we get

−1

q
J ′ +

(
1

1t
+A(ND− nT)+BpT

)
nintre

ψ/V thu

= 1

1t
nintre

ψ/V thuold+Gopt+ CnT+D(NA − pT), (26)
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whereu anduold denote the unknown and its value at the previous time step, respectively,
while the positive constantsA, B, C, andD account for the physical parameters of the
recombination/generation processes. Equation (26) is clearly in the form (24), whereσ co-
incides with the recombination terms plus the contribution coming from time discretization
and f includes the generation terms plus time discretization, respectively. The positiveness
of σ and f then immediately follows recalling (4). Similar conclusions can be drawn for
the hole current equation.

Mixed Dirichlet–Robin boundary conditions are considered in (24), with a Dirichlet
condition foru at the ohmic contact atx = 0 and a Robin-type condition at the Schottky
contact atx = L. In this caseα = qvνnintre±ψS/Vth, wherevν is the thermoionic emission
velocity of the contact andψS is the Dirichlet value ofψ at the Schottky contact, while
uS= (νS/nintr)e∓ψS/Vth,νS being the equilibrium concentration which is related to the barrier
height between the metal and the semiconductor [31, 7].

4.1. Dual Mixed Formulation and Raviart–Thomas Finite Element Discretization

In this section we address the dual-mixed formulation of problem (24) and its discretiza-
tion using Raviart–Thomas finite elements. Let

V = L2(0,L), Q = H(div; (0, L)) = {τ ∈ L2(0, L) : τ ′ ∈ L2(0, L)}. (27)

Then, the dual mixed formulation of (24) reads (see [6])
Findu∈VandJ ∈ Q such that∫ L

0 a−1Jτ dx ± ∫ L
0 uτ ′ dx + α−1J(L)τ (L) = ∓gτ(0)±uSτ(L) ∀τ ∈ Q∫ L

0 ∓J ′v dx + ∫ L
0 σuv dx = ∫ L

0 f v dx ∀v ∈ V.

(28)

Problem (28) admits a unique solution (J, u) (see [6], Theorem 1.2, p. 47, [20]).
Let us now consider the Galerkin approximation of (28). With this aim, letTh be a

nonuniform partition of [0,L] such thatx0 = 0 < x1 < · · · < xn = L and denote by
Ti = [xi−1, xi ], i = 1, . . . ,n, an interval of the partition of widthhi = xi − xi−1. We
also denote byCi the midpoint of each elementTi and bydi the distance betweenCi and
Ci+1, i = 1, . . . ,n− 1, whereas we setC0 = x0, d0 = h1/2 andCn+1 = xn, dn = hn/2.

Fork ≥ 0 we letPk be the space of polynomials of degree≤k and introduce the Raviart–
Thomas finite element space of lowest order [23]:

Vh =
{
vh ∈ V : vh|Ti ∈P0, ∀Ti ∈ Th

}
, Qh =

{
τh ∈ Q : τh|Ti ∈P1, ∀Ti ∈ Th

}
. (29)

The degrees of freedom for the unknownsuh and Jh are the valuesui of uh over each
elementTi , and the values8l of Jh at each nodexl of Th, respectively.

The finite element discretization of (28) reads
Finduh ∈Vh andJh ∈ Qh such that∫ L

0 a−1Jhτh dx ± ∫ L
0 uhτ

′
h dx + α−1Jh(L)τh(L) = ∓gτh(0)± uSτh(L) ∀τh ∈ Qh∫ L

0 ∓J ′hvh dx + ∫ L
0 σuhvh dx = ∫ L

0 f vh dx ∀vh ∈ Vh.

(30)
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Again, existence and uniqueness of the solution (Jh, uh) hold for problem (30) (see [6],
Proposition 2.11, p. 61, [20]). The linear system resulting from (30) reads

∑n
`=08`

∫ L
0 a−1τ`τi dx ±∑n

k=1 uk
∫ L

0 τ
′
i dx + 1

α
8nτi (L)

= ∓gτi (0)± uSτi (L) i = 0, . . . ,n

±(8k−1−8k)+ ukσkhk = fkhk, k = 1, . . . ,n

(31)

whereσk, fk are the averages ofσ and f on eachTk ∈ Th.

4.2. Diagonalization of the Mixed System: The Finite Volume Approach

The discrete equations (31) are a coupled system in the unknowns8l andui . Our approach
is based on the coupled use of a suitable quadrature formula and of a special average of the
coefficienta. The former allows us to diagonalize the system, thus eliminating the fluxes
and yielding a system which acts only on the scalar unknownuh. About the latter, let us first
define for any continuous functionφ(z): [0, h] 7→ R+ such thatφ(0) = φ0 andφ(h) = φh,
theexponential interpolant,

5eφ(x) = exp{51[ln φ(x)]} = φ0

(
φh

φ0

)x/h

, 0≤ x ≤ h, (32)

where51(ϕ) is theP1 interpolant of the functionϕ. This particular type of interpolation
(which, actually, is a convex average ofφ0 andφh) is motivated by the special form of the
coefficienta in the semiconductor equations. Indeed, ifa = eλ, λ ∈ P1 (as in the present
case), then5e(a−1) = a−1. Using the average (32), witha as in (25), we thus recover the
well-known Scharfetter–Gummel scheme [30].

For i = 0, . . . ,n − 1 we define〈a−1〉i as the mean value of5e(a−1) betweenCi and
Ci+1 and approximate the integral in the first equation of (31) as

∫ L

0
a−1τ`τi dx ' 〈a−1〉i di .

The generalized Galerkin dual mixed system then reads


8i 〈a−1〉i di ± (ui − ui+1)+ 1

α
8nτi (L) = ∓gτi (0)± uSτi (L) i = 0, . . . ,n

±(8k−1−8k)+ ukσkhk = fkhk k = 1, . . . ,n

u0 = un+1 = 0

(33)

and is, therefore, a genuine cell-centered finite volume formulation. Notice that the first
equation in (33) makes sense also fori = 0 andi = n upon introducing the artificial values
u0 andun+1.

A two-dimensional extension of the dual-mixed discretization procedure described so far
has been carried out in [20] where anO(h)error estimate that generalizes the classical results
of Falk and Osborn [8] has been established for the novel method. The scheme has also
been used in the multidimensional case for the approximation of scalar advection–diffusion
equations [27] and employed in [28, 5, 18, 19] for the simulation of silicon semiconductor
devices using the drift-diffusion and the energy-balance transport models.
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In the next sections we analyze the case wherexi is an internal node (i = 1, . . . ,n) and
the casesi = 0 andi = n.

4.2.1. Internal nodes. In this case the equation for the nodal flux reads

8i 〈a−1〉i di ± (ui − ui+1) = 0, i = 1, . . . ,n− 1, (34)

from which, denoting byHi (a) theharmonic average1/〈a−1〉i of 5e(a), we obtain

8i = ±Hi (a)
ui+1− ui

di
, i = 1, . . . ,n− 1. (35)

4.2.2. Ohmic node (Dirichlet boundary condition).In this case the flux equation reads

80〈a−1〉0d0∓ u1 = ∓g, (36)

since the test functionτ0 has its support only on the intervalT1. From (36) the nodal flux
reads

80 = ±H0(a)
u1− g

d0
. (37)

Notice that (37) differs from (35) only sinceui has been replaced by the boundary datum
g anddi has been replaced byd0. In other words, the effect is the same as if a “mirroring”
intervalT0 existed outside [0,L], having its midpoint atx= 0, and the value of the associated
unknownu0 were set equal tog.

4.2.3. Schottky node (Robin boundary condition).In this case the flux equation is

8n〈a−1〉ndn ± un + 1

α
8n = ±uS, (38)

since the test functionτn has its support only on the intervalTn. The nodal flux is

8n = ±Hn(a)
uS− un

dn

1

1+ Hn(a)
αdn

, (39)

which differs from (37) due to the presence of the third term at right-hand side. We shall
comment on the meaning of (39) later on.

4.2.4. Properties of the discretization method.We can prove the following:

PROPOSITION1 (Discrete maximum principle).The discrete problem(33) has a unique
and positive solution.

Proof. Problem (33) can be written in matrix form asMu = b whereu = (u1, . . . ,un)
T

is the vector of the element unknowns,b = (b1, . . . ,bn)
T is the right-hand side andM is

the tridiagonal matrix of ordern obtained after eliminating the fluxes from system (33). For
i = 2, . . . ,n− 1 the matrix entries are

Mi j =


−Hi−1(a)

di−1
j = i − 1(

Hi−1(a)
di−1
+ Hi (a)

di
+ σi hi

)
j = i

−Hi (a)
di

j = i + 1,
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while the entries of the first and last row are

M11=
(H0(a)

d0
+ H1(a)

d1
+ σ1h1

)
, M12=−H1(a)

d1

Mnn−1=−Hn−1(a)

dn−1
, Mnn=

(Hn−1(a)

dn−1
+ Hn(a)

dn

1

1+ Hn(a)
αdn

+ σnhn

)
.

Matrix M is symmetric and strictly diagonally dominant withMii > 0 and Mi j ≤ 0 for
i 6= j, i, j = 1, . . . ,n. Thus, it is a Stiltjes matrix (see Corollary 3, p. 85 [35]) and admits
a strictly positive inverse. Therefore, system (33) is uniquely solvable with a positive solution
sincebi > 0, i = 1, . . . ,n, due to the fact thatf, g, α, anduS are positive.

4.3. Formulation with the n and p Variables

The dual mixed discretization considered so far is based on the symmetric formulation
of the differential problem (24). In the case of the continuity equations this amounts to
writing the current densities using the Slotboom variables, which, although attractive from
the theoretical point of view, are not convenient in actual computations due to the presence
of exponentially varying coefficients that may give rise to overflow problems (see (25)).
It is therefore necessary to go back at the discrete level to the original (and physical)
unknownsn andp. By doing so, the symmetry of the problem is lost but, nevertheless, the
resulting matrices acting onnh and ph are still M-matrices, that is, nonsingular and with
strictly positive inverse. This property, provided that the right-hand sides of the systems are
positive, ensures a discrete maximum principle to hold, that is,nh> 0, ph> 0.

Recalling (25) and the definition of the harmonic average〈a−1〉, we get

Hi (a) =
[

1

di

∫ Ci+1

Ci

1

q Dνnintr
e∓ψ(x)/Vth dx

]−1

= q Dνnintre
±ψi /VthB(∓1ψ̂), (40)

whereψi =ψ(Ci ), i = 0, . . . ,n+ 1 with ψn+1=ψS,1ψ̂ = (ψi+1−ψi )/Vth andB(z)=
z/(ez− 1) is the Bernoulli function. Plugging (40) back into (35), the nodal flux at an
internal node reads

8i = q Dν
B(±1ψ̂)νi+1− B(∓1ψ̂)νi

di
, i = 1, . . . ,n− 1, (41)

whereνk = ν(Ck), k = 0, . . . ,n+ 1 with ν0 ≡ νD andνn+1 ≡ νS. The flux at the Dirichlet
contact is given by

80 = q Dν
B(±1ψ̂)ν1− B(∓1ψ̂)νD

d0
, (42)

while equation (39) for the flux at the Schottky contact gives, after some algebra,

8n = q Dν

[
B(±1ψ̂)νS− B(∓1ψ̂)νn

1+ Dv

vνdn
B(±1ψ̂)

]
. (43)
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We point out that (43) is the exact discrete counterpart of the formula which describes
the physics of a Schottky contact according to the theory of thermoionic emission and
diffusion [7]. We notice also that the discrete maximum principle stated in Proposition 1
for the Slotboom variables carries over also to the formulation with then andp variables.
Indeed, the matrix for this latter case is obtained by a postmultiplication of the matrixM by
apositivediagonal matrix whose entries are given byDii = nintre±ψi /Vth, which corresponds
to a column scaling ofM .

5. NUMERICAL RESULTS

We demonstrate the effectiveness of the procedures described in the previous sections
on the simulation of a one-dimensionalCdTe semiconductor slab. We remark that this
choice is by no means restrictive for the numerical method, which is indeed valid also
in the multidimensional case, but is dictated by the physics of the problem at hand. The
device under test is employed in real applications as a monocrystal module for all-optical
processing [21], and its simulation represents a very stiff problem, as will be evidenced by
numerical results.

The device lengthL is 0.5 [cm] and the applied voltage is1V =−2000 V. The mobilities
for electrons and holes areµn= 1200 [cm2/(Vs)] andµp= 100 [cm2/(Vs)], respectively.
The energy gap of the material isEg= 1.52 [eV] and its permettivity isε= 10.2 · ε0, ε0

being the dielectric constant of vacuum. The background doping profile of the device is
zero everywhere. Three levels of trapping states are considered, characterized by the data
in Table I, where1ψbk , k = 1, . . . ,3 denotes the distance between thekth trapping level
and the corresponding (conduction (a) or valence (b)) band.

We focus our attention on the study of the transient developed by the device as a
consequence of an external illumination by a light source placed in the middle of the
slab. This source term is modeled by the space–time gaussianGopt(x, t)=G0e−(t−T)2/(2σ 2

t )

e−(x−L/2)2/(2σ 2
x ), whereG0= 1021 [cm−3s−1] is the peak value,σx = 0.025 [cm] is the spatial

variance,σt = 1.5× 10−9 [s] is the time variance, andT = 20× 10−9 [s] is the peak time of
the light source.

TABLE 1

Traps Data for CdTe

(a) Donor-type traps
Trap #1 Trap #2

CD
n [cm3 s−1] 1.9× 10−7 1.9× 10−7

CD
p [cm3 s−1] 8.25× 10−6 0

ND [cm−3] 1014 1016

1ψb [eV] 0.76 0.1

(b) Acceptor-type trap
Trap #3

CA
n [cm3 s−1] 0

CA
p [cm3 s−1] 8.25× 10−6

NA [cm−3] 1.005× 1016

1ψb [eV] 0.14
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FIG. 1. Potential [V] and concentrations [cm−3]. The dimension of thex-axis is [cm].

In order to catch the very fast transient we set the time step1t = 5× 10−10 [s] and
we ran the computer program for 100 time steps starting from an initial condition corre-
sponding to the given applied voltage but with the light off (dark condition). Moreover,
the mesh for the spatial discretization was chosen nonuniform with a maximum mesh size
hM = 32× 10−3 [cm] in the middle and a minimum mesh sizehm= 10−3 [cm] near the
boundaries in order to properly describe the expected boundary layers for both carriers and
traps. Figures 1a and 1b show the distributions of the electric potential and the concentrations
of the free and trapped carriers at the final time level, respectively.

The electrons correspond to the starred line, the holes to the circled line, the trapped
carriers to the three dashed lines. In particular observe that the trapping states at mid-gap
(top line) are almost completely full while the other two levels, donor level (dashed line,
middle) and acceptor level (dashed line, bottom) are actually almost empty. Note also that the
spatial distribution of these two latter trapped carriers closely resembles the corresponding
ones for the free carrier and the presence of sharp boundary layers. In Fig. 2a we plot the time
evolution of the free carriers at about the middle of the semiconductor device, and in Fig. 2b
we plot the electric potential at the same position. In the next couple of figures the time

FIG. 2. Free carriers [cm−3] and potential [V]. The dimension of thex-axis is [s].
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FIG. 3. Electric field [V cm−1]. (a) Time evolution atx= 0.249 cm. (b) Space–time distribution. The dimen-
sions of thex-axis are [s] (a) and [cm] (b).

evolution of the electric field at about the middle of the slab and the spatial distribution at
the time levelstk= k1t (k= 0(∗), 50(s), 75(h), 100(n)) are plotted, respectively. Notice
in particular in Fig. 3a the zero-field condition which is exploited in real applications to
devise an optically activated electro-optical modulation [21]. The attitude of the device at
extending in time the existence of such a zero-field region is also profitably employed to
design time-adjustable logical optical gates. As far as the numerics is concerned, Fig. 4a
displays the distribution of the eigenvalues of the Schur complement matrix (10), which
have been computed run-time using the Matlabeig intrinsic function. Notice the clustering
of the spectrum around the value 1 due to the inversion of elliptic operators. This property
reflects into a dramatic improvement of the convergence ofGMERS, which actually takes no
more than one to two iterations to fulfill the stopping criterion.

Figure 4b shows the convergence history of the external Gauss–Seidel loop for the solution
of the steady-state condition with the light on in terms of the maximum potentials variation
(electric potential and quasi-Fermi levels) between two successive iterations. We stress that
this condition is the stiffest one for the numerical scheme due to the very large values attained
by the generation term corresponding toGopt(x, T). Notice also that the error values must

FIG. 4. Eigenvalues and G–S iterations. (a) Eigenvalues. (b) Gauss–Seidel iterations.



SIMULATION OF OPTICAL SEMICONDUCTOR DEVICES 211

be compared with the very large absolute values of the potentials, so that a variation of 10−3

is to be regarded as very small and satisfactory for the accuracy of the solution.
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