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An extended drift-diffusion model is considered to account for the kinetics of
electrons trapped in defect states within a semiconductor material. A discretization
scheme based on Newton—Krylov iterations and mixed finite volumes is then pro-
posed and applied to the model, even in the presence of Schottky contacts (i.e., Robin-
type boundary conditions). Numerical results concerning the simulation of an electro-
optical device in several working conditions are presented lastooo Academic Press
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1. INTRODUCTION

This article deals with the numerical simulation of the dynamicsiaf& resistor subject
to a very high bias. Such a device is employed as a fast switch in state-of-the-art opti
communication systems [34, 24, 21].

The mathematical model consists of the classical drift-diffusion equations [15, 31, 1
(henceforth denoted by DD) plus a set of ordinary differential equations (ODES) describi
the kinetics of the carriers trapped in defect states that are present within the semicondt
energy gap (henceforth referred tatgs) [10]. The spatial integration domain is assumed
to be one-dimensional, being the device length. This is due to the nature of the physice
problem at hand, although the methodologies that we are going to introduce are by
means restricted to one-dimensional geometries. Suitable initial and boundary conditi
(of Dirichlet and Robin type) must be provided for the unknowns of the problem, name
electric potentialy, free electron and hole concentrationandp, and trap concentrations
nr, (i=1,...,np)andpr, (j =1,...,na), wherenp andna denote the number of donor-
type and acceptor-type trapping states, respectively.

Despite its apparent simplicity, ti&iTe resistor simulation is a heavily stiff problem,
mainly due to the fact that this kind of device is quite “long” in real-life applications. Thi:
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is a source of troubles when iterative decoupling algorithms are employed to solve |
differential system, since the convergence rate is dramatically reduckdgats large
[13]. Such a drawback clearly demands the use of coupled approaches like Newtc
method, which is (asymptotically) quadratically convergent, but requires a big comp
tational effort. Moreover, stable and robust discretization schemes are mandatory for ¢
ing with the internal and boundary layers that arise when solving the current continui
equations.

In this article we propose an efficientimplementation of the Newton method on the whc
coupled system that is based on the use of a block Gauss—Seidel algorithm to decouple
traps from the free carriers. For each Gauss—Seidel step, we first solve by Krylov subsy
iterations [14, 25] the free carrier block equations; then we solve the kinetic ODEs
update the trap concentrations. This second step is virtually cost-free since it requires
solution ofnp + na diagonal linear systems. As for the spatial discretization, mixed finite
volumes (MFV) are employed which ensure current flux conservation and nonnegat
concentrations of free carriers [28]. Time advancing is dealt with the Backward Eul
method (BE), which is well-known to be unconditionally stable. It is worth noting tha
the use of MFV and BE guarantees the positivity of the computed trapped carriers
well.

The outline of the article is as follows. The mathematical model of the problem at hand
presented in Section 2. An efficient implementation of a suitable iterative decoupling alc
rithm is then addressed in Section 3, where the Schur complement for Newton’s method
the Kerkhoven—Saad approaches [14] are analyzed and compared. The spatial discretiz
scheme of the current continuity equations is described in Section 4, where a differel
scheme is derived from the mixed finite element formulation of the problem by couplir
the use of a quadrature formula to diagonalize the local stress matrix [3] with a harmol
average of the diffusion coefficient [20]. This technique is equivalent in one dimension
using the well-known exponentially fitted Scharfetter—Gummel method [30] and can |
extended to the multidimensional case (see [20, 27-29, 19]). Numerical results are tl
reported in Section 5 to validate the computational procedure in the simulation of a realis
device operating in distinct (and quite different) working conditions.

2. THE SEMICONDUCTOR EQUATIONS COMPRISING TRAPS

The drift-diffusion equations including trap-assisted phenomena read (see, e.g., [31]

anT, .

S =UR-UR =1l (12

Ipr A A -

o =Un—Un  i=1l....m (1b)
np na

—div(eVy) =q | Y (No, =nr) = ;(Na, — pr;) + p—n (10)
1 1

an 1 A

5_5 v, = Zu Zjunj—u (1d)

ip 1

o T qdep_ Z up Z up ()




SIMULATION OF OPTICAL SEMICONDUCTOR DEVICES 199

with the constitutive relations,

Jn=09DnVn —qunnVy @)
Jp=—0DpVp —duppVy,
and the following expressions of the charge-trapping net recombination rates:
Ec —sTD,
|:(ND. —nT)n—Ncexp( ')nTi}
US =CP |ny,p- NVexp( _ V)(NDi—nTi)} i=1,...,np
3)

UA CA { Na, — p NVexp< “, EV)pTJ]

A

TTj)(NAj—pTJ)] i=1...n

U,ﬁJ = Cﬁj {ijn — Nc exp(—

Suitable initial and boundary conditions must of course be provided. In (1), the unknow
¥, n, p, ny,, andpr, are the electric potential and the electron and hole free and trapp
carrier concentrations. The constantande are the electronic charge and the material
dielectric permettivity, respectively. The functiops and u, are the carrier mobilities,
related to the diffusivitie®, and D, respectively, through Einstein’s relation.

Trapping recombination/generation phenomena are modeled by (3), Whefke, Ec,
and Ey are the Boltzmann constant, the electronic temperature (assumed isothermal
the crystal lattice), and the conduction and valence band energy levels, respectively.
constantaNc and Ny are the effective densities of states. We assume that all of the tra
have only one energy level, and there is no interaction among traps; moreover, we s
assume that the readjustment time for a trapped electron is negligible compared to t
required on the average for the trap to emit the electron or to capture a hole (see [26]).

Semiconductor nondegeneracy is assumed hencefortm(i.p<< N¢, Ny), which al-
lows us to approximate the Fermi—Dirac statistics for the free-carriers with the Maxwel
Boltzmann statistics. The number of donor levels occupied by the trapped electrons, insts
is given by Fermi—Dirac statistics

Nt =

Npb
1+ exp(.si}gf) ’ 4)

because the energy distance between the trapping&'%v&hd the fermi leveEr can be
small, thus making the effects of Pauli principle nonnegligible. An analogous relation
(4) holds for the trapped holes occupying the acceptor levels: Mathematically, (4) impli
thatNp — nt > 0 (Nao — pr > 0) for all x andt.

The coefficient€y, CP (Ch, Cp , resp.) and the parametef® (€%, resp.) denote the
capture coefficients and the energy levels of each trap within the energy gap. Supersc
D and A characterize “donor-type” and “acceptor-type” trapping centers, respechigely.
andNj, are respectively the concentrations of each donor-type and acceptor-type impu
throughout the semiconductor. (For a complete derivation of the drift-diffusion model, s
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[15, 12, 31], and a detailed physical description of the recombination/generation proces
can be found in [33] and [31], Chapter 4).

We point out that assuming the trapping center to be in stationary conditions, i.
*’%:%T:O, we recover the classical Shockley—Read—Hall model for trap-assiste
generation—recombination phenomena. The functibrin (1d)—(1e) denotes the net
recombination rate due to processes different from the trap-assisted phenomena (Shock
Read—Hall processes). It includes three-particle phenomena (Auger recombination, imy
ionization), and thalirect processes assisted by photohar(d-to-bandoptical recombi-
nation and generation) [31]. Henceforth, we will neglect such phenomena, except for 1

optical generation, thus assumibg= —G°Ft,

3. THE ITERATIVE SCHEME AND THE NEWTON METHOD

System (1) constitutes a set of nonlinearly coupled equations so that a suitable decour
algorithm is highly recommended for its solution.

A first approach could be the use ofjaneralized Gummel mgp1], which amounts to
solving each equation assuming only the corresponding variable to be unknown and t
iterating until convergence is achieved. Despite its simplicity, this approach is not very s
isfactory because of the very high number of iterations required for convergence, especi
under high bias and high photogeneration conditions [17]. A second possibility consists
using a global Newton algorithm. This is general will certainly improve convergence spe
at the expense of an increase in the computational cost.

We thus follow an intermediate strategy, which has proved to work quite effectively i
numerical experiments; i.e., we decouple the traps from the other equations of the <
tem by means of a block Gauss—Seidel algorithm and apply Newton’s method only
Poisson and currents equations. This considerably simplifies the iterative scheme, si
the Jacobian matrix can be handled in a block fashion, reducing both the computatio
time and the required memory. Moreover, our implementation of Newton’s method ensu
that the right-hand sides in both current equations are positive, so tliatr@te maxi-
mum principl€for the concentrations holds provided that a suitable discretization scheme
employed.

In the forthcoming sections we address two different implementations of Newton
method on the DD equations only (i.e., Poisson and current continuity equations), assurr
the traps to be known. This amounts to analyzing the single step of the outer Gauss—Se
loop, corresponding to the time discretization of system (1) by the BE method.

3.1. The Schur Complement Approach

Assuming the traps to be known, the DD system can be symbolically written throug
three nonlinear operators as:

V(,n p) =0 (53
W, ¢) =0 (5b)
Z(p,y)=0. (50)

Denoting by ¢, w, Z) the variations of ¢, n, p) and neglecting the (possible) dependencies
of the mobilities, andup on (7, n, p), a step of Newton’s method for the DD system can
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be written in matrix form as

A Az Awiz| [, =V (¥, n, p)
A Apn O wl=|-Whvy) |, (6)
Azr 0 Agl L? ~Z(p. ¥)

where the matrix blocks,; are given by, for, j =1, 2, 3,

Aiv = ﬂ(v) = —div(eVv)

oy
oV oV
Apw = 8T,](w) =w A3z = ETp(Z) =—Z ,
Asv = W ) = div nv A _ W = —divJ v
21V = W(U) = div(qunnVu) 22W = m(w) = —divJn(w)

3z _ 9z .
Az = @(v) = —div(quppVv) Azsz = sz(Z) =divJy(2).

The presence of the two zero blocks allows us to eliminatend z from the last two
equations as a function of

w = —A (W 4 Azv) @®
Z = —Az3(Z + As).
Plugging (8) back into the first equation of (6) we finally obtain
(A11— A12A5 Az — A1sAZ3 Ast)v = =V + AAR W + A3A5; Z, ©)

where the so calleBchur complememhatrix S can be recognized on the left-hand side:
S= A — ApAYA — AsAZ Az (10)

Matrix S is in general full, due to the inversion of blocks, and Ass, although each
single blockA;; has a sparse structure. This makes it in practice impossible to build a
store the Schur matri$ and thus requires the use of aerative method such asMRES

to solve system (9) [25]. This method requires only the multiplication of the m&triith
some vectok, which can be done as follows:

Sx= A11X — Ay — A13z, (11)
wherey andz can be found by solving the systerfigy = A1x andAszsz = AziX.

3.2. An Abstract Framework
Each of the equations (5) implicitly defines a nonlinear operator:
Y =¥(n, p

n= N®) (12)
p= P®).
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Plugging the operators related to the concentrations back into the potential equation we

v =¥ (N®W), P¥)). (13)

SettingT () = W(N(¥), P(¥)), the solution of the DD system thus amounts to dealing
with the nonlinear operator equation:
v =T®). (14)

A first approach to solving (14) consists of resorting to a fixed point iteration:

Vit = T(W). (15)

This latter is exactly the classic@®ummel magwhere the equations are solved in reverse
order with respect to the standard decoupling algorithm).

An alternative strategy (originally proposed by Kerkhoven and Saad [14]) consists
reformulating (14) as:

(I —=T() =0, (16)

| being the identity operator. It is now clearly possible to apply Newton’s method to (16) 1
obtain

J) == =T)(¥w) (17)
Vi1 = Yk + v,
whereJ denotes the Fechet derivative of the operatbr T:
d d daWwoIN 9w 9P
J:w[l —T]:w[l — U(N), Py)] =1 ~ndy  opay (18)

Differentiating the current equations in (5) with respect/tpand the potential equation
with respect ton andp yields

J_ (VN TT[AV. OV (AW TOW BV (97 HZ 19
-&) =) Vw6 w0 @

from which we conclude that method (17) leads to solve the linear system

AV av /aw\ taw 8V /9z\ toz
N\ ) |aelms) ot aslas) ool v = VW N@), P@)). (20
{I (&ﬁ) [8n < 8n> Ay + 3p(8p> BW]}U (¥, N(¥), P(¥)). (20)

Using definitions (7), we can write (20) in matrix form as

ALL (A11— A12AZ Az — AtsAg3Agt)u = —V; (21)
that is,

(A11 — A2A A — A1sAs3 Az ) v = —ApV. (22)

It is easily seen that this linearization process sharesneecoefficient matrix as the
Newton method (9) when implemented with a Schur complement approach, but ha
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different right-hand side. Computing this latter amounts to solving at each time step the t
continuity equations (1d)—(1e) with a given potential.

With this aim, we consider a suitable splitting of the recombination/generation terms tt
ensures the positiveness of the right-hand sides of the corresponding finite element sys
and thus, in turn, the positiveness of the concentratidissiete maximum princip)eThis
statement will be addressed more in detail in the next section and represents the n
difference between approaches (22) and (9).

Furthermore, we notice that the blosk; arises as a natural preconditioner for the Schur
matrix. In such a case, the eigenvalues of the final matrix at the left-hand side of (21)
clustered around the value 1 in the complex plane due to the inversion of Heglkad
A3z coming from the discretization of two elliptic problems [14].

4. NUMERICAL SOLUTION OF THE CURRENT CONTINUITY EQUATIONS

In this section we deal with the numerical approximation of the current continuity equ
tions in a one dimensional domain [(,using mixed finite elements. The multidimensional
extension of the method has been considered and analyzed in [20, 27-29, 19].

Using the classical Slotboom change of variable [32], the current densities can be writ
as

J =4qD, e/ Vou/, (23)

where the prime denotes spatial differentiatioatands fon or p, V4, is the thermal voltage,
Nintr iS the intrinsic concentration in the semiconductor arel - eF¥/Vin js the Slotboom
variable associated with electrons (top sign) or holes (bottom sign), here and througho

Owing to (23) the boundary value problem associated with each linearized current c
tinuity equation can be formulated as

J=4au in (O, L)
FJ +ou=f in (0, L) (24)
u@@ =g, J(L) = Fa(u(L) — us),

where
a = qD,Njpye™’/Vr, (25)

while g, «, andus are positive given constants aagdo, andf are positive given functions
witha™?, o € L*(0, L) and f € L2(0, L) (for the definition of all the function spaces, see,
e.g., [22], Chapter 1, and [6], Chapter 3).

To prove the positivenessefand f , consider the current continuity equation for electrons
and assume for the sake of simplicity (but without loss of generality)rifat na = 1
in (1). Then, using the BE method for the time discretization and moving the recombinati
terms to the left-hand side, we get

1 1
30t (At +A(Np —n7) + BpT> Nine€”/ VU
1
= — g€’/ VUt 4 GO 4 Cnyp + D(Na — pr), (26)

At
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whereu andu® denote the unknown and its value at the previous time step, respective
while the positive constantd, B, C, andD account for the physical parameters of the
recombination/generation processes. Equation (26) is clearly in the form (24), where
incides with the recombination terms plus the contribution coming from time discretizatic
and f includes the generation terms plus time discretization, respectively. The positivent
of o and f then immediately follows recalling (4). Similar conclusions can be drawn fol
the hole current equation.

Mixed Dirichlet—Robin boundary conditions are considered in (24), with a Dirichle
condition foru at the ohmic contact at = 0 and a Robin-type condition at the Schottky
contact atx = L. In this caser = qu,Ninyet?s/Vin, wherew, is the thermoionic emission
velocity of the contact angs is the Dirichlet value ofyr at the Schottky contact, while
Us = (vs/Niny)€TYs/ V15 being the equilibrium concentration which is related to the barriel
height between the metal and the semiconductor [31, 7].

4.1. Dual Mixed Formulation and Raviart—-Thomas Finite Element Discretization
In this section we address the dual-mixed formulation of problem (24) and its discretiz
tion using Raviart—-Thomas finite elements. Let
V = L?0,L), Q = H(div; (0, L)) = {r € L%(0, L) : 7’ € L?(0, L)}. (27)

Then, the dual mixed formulation of (24) reads (see [6])

Findu e VandJ € Q such that

Jyaldrdx+ [yur’dx+a1I(L)r(L) = Fgr(O)+ust(L) VreQ (28)

fOL :FJ’vdX—i—fOL auvdx:fol' fodx Yv e V.
Problem (28) admits a unique solutiod, ) (see [6], Theorem 1.2, p. 47, [20]).

Let us now consider the Galerkin approximation of (28). With this aimZjebe a
nonuniform partition of [O,L] such thatxp = 0 < x; < --- < X, = L and denote by

Ti = [Xi-1,%],i = 1,...,n, an interval of the partition of width;, = x; — x;_;. We
also denote by; the midpoint of each elemeiit and byd; the distance betwedd; and
Cit1,i =1,...,n—1, whereas we s€y = Xp, dy = h1/2 andC,,11 = Xn, dq = hn/2.

Fork > 0 we letPx be the space of polynomials of degrek and introduce the Raviart—
Thomas finite element space of lowest order [23]:

Vo ={vh€Viwly €Po,VTi€Th}, Qn={me Q:imly P, VTi € Th}. (29)

The degrees of freedom for the unknownsand J,, are the values; of u, over each
elementT;, and the value®, of J, at each node of 7y, respectively.
The finite element discretization of (28) reads

Find uy, € V,, and J, € Qp, such that

[y a tdhmdx £ [i upt,dx + a1 Ih(L)th(L) = Fg(0) + Ustn(L) Y7 € Qn

fOL FJvpdx + fOL oUpvn dX = fOL f o dx Yo, € V.
(30)
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Again, existence and uniqueness of the solutign ) hold for problem (30) (see [6],
Proposition 2.11, p. 61, [20]). The linear system resulting from (30) reads

> reo @ fOL a~lrmdx £ YL Uk fOL 7/ dx + O%Cbnri (L)
= F97(0) £ usTi (L) i=0,....,n (31)
(D1 — Dx) + Ukoihk = frhy, k=1,...,n

whereoy, fx are the averages efand f on eachy € 7.

4.2. Diagonalization of the Mixed System: The Finite Volume Approach

The discrete equations (31) are a coupled system in the unknbyvemglu; . Our approach
is based on the coupled use of a suitable quadrature formula and of a special average c
coefficienta. The former allows us to diagonalize the system, thus eliminating the fluxe
and yielding a system which acts only on the scalar unknawAbout the latter, let us first
define for any continuous functiai(z): [0, h] — R* such thatp (0) = ¢g ande (h) = ¢p,
theexponential interpolant

x/h
ne¢<x>=expml[ln¢<x>]}=¢o(§) . 0=x=<h, (32)
0

whereTll;(p) is theP; interpolant of the functio. This particular type of interpolation
(which, actually, is a convex averaged and¢y,) is motivated by the special form of the
coefficienta in the semiconductor equations. Indeedj i €', A € IP; (as in the present
case), thefl¢(a~t) = a~1. Using the average (32), withas in (25), we thus recover the
well-known Scharfetter—Gummel scheme [30].

Fori = 0,...,n — 1 we define(a™1); as the mean value di.(a"') betweenC; and
Ci,1 and approximate the integral in the first equation of (31) as

L
/ a_l‘r[l,'i dx ~ (a‘l)idi.
0
The generalized Galerkin dual mixed system then reads

@i (@ h)id + (U — Uiy + 2Pn7i(L) = Fgr(0) £usz(L) i=0,....n
(D1 — i) + ukoxhe = fih k=1,...,n (33)

Up=Un1=0

and is, therefore, a genuine cell-centered finite volume formulation. Notice that the fi
equation in (33) makes sense alsoifer 0 andi = n upon introducing the artificial values
Uo andun, 1.

A two-dimensional extension of the dual-mixed discretization procedure described so
has been carried outin [20] where@h) error estimate that generalizes the classical result
of Falk and Osborn [8] has been established for the novel method. The scheme has
been used in the multidimensional case for the approximation of scalar advection—diffus
equations [27] and employed in [28, 5, 18, 19] for the simulation of silicon semiconduct
devices using the drift-diffusion and the energy-balance transport models.
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In the next sections we analyze the case wheie an internal nodei (=1, ..., n) and
the cases = 0 andi = n.

4.2.1. Internal nodes. In this case the equation for the nodal flux reads
@i (@ bid + (U — uj;1) =0, i=1...,n—1, (34)

from which, denoting by (a) theharmonic averagd/(a™'); of IT¢(a), we obtain

Uit1 — Ui

i = M (@)~
|

i=1...,n—1 (35)
4.2.2. Ohmic node (Dirichlet boundary condition)n this case the flux equation reads

do(a odo F U = FO, (36)

since the test functiomy has its support only on the interv®d. From (36) the nodal flux
reads
u p—
®g = +Hop(a) — 5 9 (37)
0

Notice that (37) differs from (35) only sinag has been replaced by the boundary datum
g andd; has been replaced lay. In other words, the effect is the same as if a “mirroring”
interval Ty existed outside [Q, ], having its midpoint ak = 0, and the value of the associated
unknownup were set equal tg.

4.2.3. Schottky node (Robin boundary conditiorih this case the flux equation is
1 1
® (@ " )ndy = up + &cbn = +uUsg, (38)

since the test function, has its support only on the interval. The nodal flux is

Un 1

15 @ %)

u p—
@y = £Hp(a)— 5
n

which differs from (37) due to the presence of the third term at right-hand side. We sh,
comment on the meaning of (39) later on.

4.2.4. Properties of the discretization methodVe can prove the following:

PropPoOsSITION] (Discrete maximum principle). The discrete probler83) has a unique
and positive solution.

Proof. Problem (33) can be written in matrix form s = b whereu = (uy, ..., u,)"
is the vector of the element unknowiis= (bs, ..., by)T is the right-hand side and is
the tridiagonal matrix of ordar obtained after eliminating the fluxes from system (33). For
i =2,...,n—1the matrix entries are
—HpR j=i-1
Mjj; = (Ldﬁa) + Hina) +oihi) j=i

—5 j=i+1
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while the entries of the first and last row are

Ho(@ Hi(@ Hi(@
My — o )+ 1(@) Foihy ). M= — 1(@)
do dl dl
Hn-1(a) Hn-1(@)  Hn(a) 1
Mpno1=— Mpn = h, |.
T " ( G |y 1q@ >

Matrix M is symmetric and strictly diagonally dominant wit#f; >0 and M;; <0 for
i#£j,i,j=1,...,n. Thus, itis a Stiltjes matrix (see Corollary 3, p. 85 [35]) and admits
a strictly positive inverse. Therefore, system (33) is uniquely solvable with a positive soluti
sinceb; > 0,i =1, ..., n, due to the fact thaf, g, «, andus are positive.

4.3. Formulation with the n and p Variables

The dual mixed discretization considered so far is based on the symmetric formulati
of the differential problem (24). In the case of the continuity equations this amounts
writing the current densities using the Slotboom variables, which, although attractive frc
the theoretical point of view, are not convenient in actual computations due to the prese
of exponentially varying coefficients that may give rise to overflow problems (see (25
It is therefore necessary to go back at the discrete level to the original (and physic
unknownsn and p. By doing so, the symmetry of the problem is lost but, nevertheless, tt
resulting matrices acting om, and py, are still M-matrices, that is, nonsingular and with
strictly positive inverse. This property, provided that the right-hand sides of the systems
positive, ensures a discrete maximum principle to hold, thak,is; 0, p, > 0.

Recalling (25) and the definition of the harmonic aver&ae), we get

Cin -1 ~
M@= |y / Lm0k = qDne BEAY),  (40)
di G qunintr

wherey; = ¥(Ci),i =0, ..., n+1 With Y1 = Vs, AY = (Yip1 — ¥i)/ Vin and B(2) =
z/(e*—1) is the Bernoulli function. Plugging (40) back into (35), the nodal flux at ar
internal node reads

5 BEA)i 11 — BFAY)v;

Qi =q q ,
|

i=1....n—1, (41)

wherey, = v(Cy),k =0, ...,n+ 1 with vy = vp andv,,1 = vs. The flux at the Dirichlet
contact is given by

B(£Ay)v1 — B(FAY)vp

oo =qD
0=( d

(42)
while equation (39) for the flux at the Schottky contact gives, after some algebra,

oy = g0, | BEADS = BEAT ),
1+ BeB(E:AY)

(43)
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We point out that (43) is the exact discrete counterpart of the formula which describ
the physics of a Schottky contact according to the theory of thermoionic emission a
diffusion [7]. We notice also that the discrete maximum principle stated in Proposition
for the Slotboom variables carries over also to the formulation witmthedp variables.
Indeed, the matrix for this latter case is obtained by a postmultiplication of the nvatoix
apositivediagonal matrix whose entries are giveny = ni,€*%1/Vn which corresponds

to a column scaling d#.

5. NUMERICAL RESULTS

We demonstrate the effectiveness of the procedures described in the previous sect
on the simulation of a one-dimensionadTe semiconductor slab. We remark that this
choice is by no means restrictive for the numerical method, which is indeed valid al
in the multidimensional case, but is dictated by the physics of the problem at hand. T
device under test is employed in real applications as a monocrystal module for all-opti
processing [21], and its simulation represents a very stiff problem, as will be evidenced
numerical results.

The device lengtlh is 0.5 [cm] and the applied voltageAsv = —2000 V. The mobilities
for electrons and holes arg, = 1200 [cn?/(Vs)] andup =100 [cnt/(Vs)], respectively.
The energy gap of the material i,=1.52 [eV] and its permettivity i$ =10.2- &g, &9
being the dielectric constant of vacuum. The background doping profile of the device
zero everywhere. Three levels of trapping states are considered, characterized by the
in Table |, whereAyn, ,k = 1, ..., 3 denotes the distance between kitte trapping level
and the corresponding (conduction (a) or valence (b)) band.

We focus our attention on the study of the transient developed by the device a:
consequence of an external illumination by a light source placed in the middle of tl
slab. This source term is modeled by the space—time gauS8Paix, t) = Goe~t-T)*/(2%)
e~ x-L/2%/25) whereGo = 107 [cm~3s~1] is the peak valuery, = 0.025 [cm] is the spatial
varianceg; = 1.5 x 1072 [s] is the time variance, aril = 20 x 10-°[s] is the peak time of
the light source.

TABLE 1
Traps Data for CdTe

(a) Donor-type traps

Trap #1 Trap #2
CP[ecm®s™] 1.9x107 1.9x 107
CP[cm’s™] 8.25x 1076 0
Np [cm~3] 104 10
Ay, [eV] 0.76 01

(b) Acceptor-type trap
Trap #3

Ch [em®s™] 0
Cplem’s™] 8.25x 107
Na [cm~9] 1.005x 106

Ay [eV] 0.14
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FIG. 1. Potential [V] and concentrations [cif]. The dimension of the-axis is [cm].

In order to catch the very fast transient we set the time atep= 5 x 10719 [s] and
we ran the computer program for 100 time steps starting from an initial condition corr
sponding to the given applied voltage but with the light off (dark condition). Moreovel
the mesh for the spatial discretization was chosen nonuniform with a maximum mesh <
hm =32 x 103 [cm] in the middle and a minimum mesh sibg, = 10-2[cm] near the
boundaries in order to properly describe the expected boundary layers for both carriers
traps. Figures 1a and 1b show the distributions of the electric potential and the concentrat
of the free and trapped carriers at the final time level, respectively.

The electrons correspond to the starred line, the holes to the circled line, the trap
carriers to the three dashed lines. In particular observe that the trapping states at mid:
(top line) are almost completely full while the other two levels, donor level (dashed lin
middle) and acceptor level (dashed line, bottom) are actually almost empty. Note also that
spatial distribution of these two latter trapped carriers closely resembles the corresponc
ones for the free carrier and the presence of sharp boundary layers. In Fig. 2a we plot the:
evolution of the free carriers at about the middle of the semiconductor device, and in Fig.
we plot the electric potential at the same position. In the next couple of figures the tir

2000,

1000)

-1000r

-2000F

~-3000~

10 L : L L 4 . . . .
0 1 2 3 4 5 0000 1 2 3 4 5

(a) Free carriers evolution (b) Potential evolution

FIG. 2. Free carriers [cn?] and potential [V]. The dimension of theaxis is [s].
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FIG. 3. Electric field [V cnr?]. (a) Time evolution ak = 0.249 cm. (b) Space-time distribution. The dimen-
sions of thex-axis are [s] (a) and [cm] (b).

evolution of the electric field at about the middle of the slab and the spatial distribution
the time leveldy = kAt (k=0(x), 50(0), 75(C0), 100(2)) are plotted, respectively. Notice
in particular in Fig. 3a the zero-field condition which is exploited in real applications t
devise an optically activated electro-optical modulation [21]. The attitude of the device
extending in time the existence of such a zero-field region is also profitably employed
design time-adjustable logical optical gates. As far as the numerics is concerned, Fig.
displays the distribution of the eigenvalues of the Schur complement matrix (10), whit
have been computed run-time using the Ma#ag intrinsic function. Notice the clustering
of the spectrum around the value 1 due to the inversion of elliptic operators. This prope
reflects into a dramatic improvement of the convergen@aveRs which actually takes no
more than one to two iterations to fulfill the stopping criterion.

Figure 4b shows the convergence history of the external Gauss—Seidel loop for the solu
of the steady-state condition with the light on in terms of the maximum potentials variatic
(electric potential and quasi-Fermi levels) between two successive iterations. We stress
this condition is the stiffest one for the numerical scheme due to the very large values attai
by the generation term corresponding3éPi(x, T). Notice also that the error values must

WHMSEESS GE A8 W W W P BR B3 S2 S0ND 10

" n n 1 s . N
1 1.00001 1.00001 1.00002 1.00002 1.00002 1.00003 0 200 400 600 800 1000 1200 1400

(a) (®)

FIG. 4. Eigenvalues and G-S iterations. (a) Eigenvalues. (b) Gauss—Seidel iterations.
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be compared with the very large absolute values of the potentials, so that a variatiod of 1
is to be regarded as very small and satisfactory for the accuracy of the solution.
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